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Abstract

Corrugated paper is produced in large volumes for packaging purposes, an application which places
high demands on the structural stability of the employed corrugated board containers. This is taken into
account in the optimization procedure for reducing the area-specific weight of corrugated board which
is presented in this paper.

For predicting effective properties of corrugated board designs, the geometry of the board is dis-
cretized by finite shell elements, and a periodic unit cell model, which contains a minimum of one full
wave of the flute, is generated. By application of appropriate periodicity boundary conditions, the ef-
fective mechanical behavior of a theoretically infinite board can be predicted within the limits of linear
shell theory. Furthermore, local loss of stability can also be calculated. It is possible to embed this
model into an optimization procedure which attempts to reduce the area-specific weight of the board
by modifying the governing geometrical parameters while enforcing the stiffness and buckling strength
constraints. It has to be noted that the calculation of critical loads with respect to local buckling involves
a minimization scheme within this optimization loop in order to find the critical buckling wavelength
and adjust the unit cell size accordingly.

We apply the proposed optimization scheme to a specific kind of corrugated board in order to
determine if there is potential for weight-reduction. The optimization scheme gives a set of parameters
which describes a new design of corrugated paper with the same buckling strength, but an area-specific
weight that is reduced by more than 18% with respect to the original design. The improved corrugated
board shows simultaneous buckling of fluting and liners under a compressive membrane load along the
generatrix of the flute.

Keywords: corrugated board, optimization, buckling, finite element method.

1. Introduction

Corrugated board is used in significant quantities for packaging purposes, where its good weight-specific
stiffness and strength properties are exploited in the construction of boxes and containers for the pro-
tection and the transport of goods. Since corrugated board is a sandwich structure consisting of a wavy
core called flute and face sheets called liners it is prone to buckling both on the global level of the box
walls and the local level of liner and/or flute. In the following, a brief overview over relevant literature
on the buckling behavior of corrugated board will be given.

In-plane loading of corrugated board will, in general, be of biaxial nature. Thus, it is important
to consider the interaction of simultaneous loads acting in different in-plane directions. Patel et al. [1]
contribute to this subject by loading cylindrical shells made from corrugated board under combinations
of axial compression, torque and external pressure, thereby deriving experimental failure envelopes under
interacting global loads. In view of the need to predict the failure of corrugated board under biaxial
loading, a failure criterion for the board liners has been proposed in [2], taking into account both the
strength of the material itself and its structural stability. This paper is put into a wider context in the
doctoral thesis of Nyman [3].

The onset of global buckling in corrugated board is certainly influenced by the kinematic boundary
conditions, which have to be implemented carefully in experiments and simulations alike. Allanson and
Svärd [4] show full-scale finite element simulations for a square corrugated board under uniaxial loading
and simple supports on all edges. Favorable agreement with experimental results is demonstrated with
respect to predicted force-displacement relationships and the onset of failure.
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For practical packaging applications the strength and stability of boxes made from corrugated board
are of great importance. Stacking boxes on top of each other places the highest load on the box at
the bottom, which has to possess sufficient box compression strength for withstanding this load without
collapsing. A lasting contribution for the design of corrugated board containers is the design formula
proposed by McKee [5]. Attempts for a more accurate prediction of the compression strength of corru-
gated containers comprise finite element simulations of the whole box (including closure fins) using shell
elements that exhibit the same effective orthotropic stiffness as the actual corrugated board, compare
[6] and [7]. In [6] a good agreement between simulation results and experimental data was obtained for
both the initial buckling load and the limit load, the latter being approximately twice as high as the
former for the considered type of box.

Different modes of instability can be triggered by compression in thickness direction of the corrugated
board. The response of corrugated board to a crushing deformation in face normal direction is governed
by snap-through buckling and progressive self-contact leading to nearly complete densification of the
board, see [8] for a corresponding finite element study including effects of imperfections as well as
experimental results.

In this paper, we discuss methods of improving corrugated paper designs by applying numerical
sizing optimization methods for the reduction of the area-specific weight of the board while maintaining
a required buckling strength both on the level of local buckling of liners and fluting and on the level of
global buckling of whole plates made from corrugated board, see also [9].

It has to be pointed out, that the terms ‘optimization’ and ‘optimum’ used in this paper do only
apply in a local sense, because the non-linear nature of the optimization problem does not allow for the
guaranteed prediction of a global optimum.

2. Method

2.1 Problem Description

The objective of this study was the development of a framework for the minimization of the area-specific
weight of corrugated board in the presence of local and global stability constraints. The study is con-
cerned exclusively with single wall corrugated boards as shown in Fig. 1. This type of corrugated board
consists of one ply of fluted paper which is glued between two plies of paper or cardboard.

Figure 1 shows the geometrical parameters of the unit cell model for corrugated board. The overall
dimensions are described by Fig. 1 (left), where luc denotes the length of the unit cell in 1-direction,
buc marks the width of the unit cell, which is equal to the wavelength bwl of the liner in the presented
example, and huc describes the overall thickness of the finite element model as the distance between the
reference planes of the liner shell elements. Note, that this thickness does not correspond to the actual
overall thickness of the corrugated board. A detailed description of the geometrical parameters of the
individual paper sheets can be found in Fig. 1 (right), which represents a cross-section of the corrugated
board normal to the flute generatrix. The thickness of the flute is defined by tF, while the thickness of
the liners is given by tL. The flute is represented by a sinus function. The shell elements representing the
liners are shown to have an offset of ho from the reference surface, on which the finite element nodes are
defined. This simplifies the model generation, because the kinematic coupling between flute and liners
is established by sharing the same FE nodes, without changing the effective mechanical properties. Of
course this approach implies perfect bonding between fluting and liners. An additional parameter bb,
which can be used to define a finite bonding region, is set to zero for this study, bb ≡ 0.

For the definition of a reference configuration, from which the optimization procedure can be started,
geometrical parameters and material data for actual corrugated board has been extracted from [1]. Two
cases have been examined: (a) corrugated board made from a fictitious, isotropic, paper-like material
with E = 8000 MPa and ν = 0.3, for which the geometrical parameters are given as bwl = 7.2 mm,
huc = 3.6 mm, and tF = tL = 0.2 mm, as well as (b) corrugated board with orthotropic paper material
parameters as defined in Table 1. The directions l-q-t, which are local to the shell elements, are defined
as in-plane/parallel to the generatrix, in-plane/normal to the generatrix, and out-of-plane with respect
to the individual elements, respectively. The density of paper was assumed to be ρ = 805 kg/m3 for
both cases.

The reference design was evaluated in terms of the critical compressive load in the longitudinal, 1-
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Figure 1: Principal dimensions of a corrugated board unit cell (left) and correlation of shell reference
surfaces and shell middle surfaces (right) in the finite shell element model.

Table 1: Geometrical parameters for the original, unoptimized corrugated board along with orthotropic
material data; based on data for actual corrugated board published in [1].

bwl = 7.2 mm
huc = 3.6 mm
tL = 0.231 mm
tF = 0.252 mm
βb = 0.0
Ā = 0.8302 mm

Liner Flute
El 3010 2260 MPa
Eq 8220 5270 MPa
νql 0.17 0.17 -
Gql 1920 1340 MPa
Glt 45 45 MPa
Gqt 45 45 MPa

direction, |N∗

11,0|, that leads to local buckling and in terms of its effective bending stiffness B1,0 about the

transverse 2-direction. Furthermore, the width-specific cross-sectional area Ā was calculated according
to:

Ā =
2bwltL + LF tF

bwl

(1)

where LF denotes the running length of flute paper for a full sinusoidal wave of the fluting, compare Fig. 1.
Starting from the reference geometry, we now pose the following constrained optimization problem:

Minimize the weight per unit area of the corrugated board (i.e., Ā) by a variation of bwl, huc,
tL, and tF, respectively, while retaining at least the same strength of the original design with
respect to local buckling under compression in 1-direction, as well as retaining at least the
same stiffness for bending about the 2-direction (for preventing global loss of stability.)

A semi-analytical and a purely numerical optimization approach will be proposed in Sections 2.2 and 2.3,
respectively. Both depend, albeit to varying degrees, on a finite element unit cell model for corrugated
board that shall be described in the following.

2.2 Finite Element Unit Cell Model

In order to calculate effective properties of corrugated board, such as effective stiffness or critical com-
pressive membrane forces, finite element unit cell models as shown in Figure 1 (left) were set up in the
general purpose finite element code ABAQUS (www.abaqus.com).

The unit cell concept can be outlined only briefly here; by means of appropriate kinematic boundary
conditions it is possible to predict the effective mechanical behavior of spatially periodic structures while
only modelling a small, geometrically representative building block of the structure, the so-called unit
cell. In our case, the boundary conditions were chosen such that the unit cell had all macroscopic
degrees-of-freedom that are provided by classical Kirchhoff/Love shell theory, meaning that no overall
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Figure 2: Unit load cases (top box) and corresponding buckling modes (bottom box) for uniaxial loading
in 1-direction (a), uniaxial loading in 2-direction (b), in-plane shear loading (c), bending about the 2-axis
(d), bending about the 1-axis (e), and twisting (f).

transverse shear deformation is taken into account. However, an overall thickness reduction of the board
under loading can be simulated as well as local deformations in the board cross-sections.

The macroscopic deformation of the unit-cell was super-imposed on a field of microscopic deforma-
tions that was periodic in 1 and 2 direction, respectively, from one side of the unit cell to the other. By
appropriate processing of (micromechanical) nodal forces, effective macromechanical membrane forces
and sectional moments can be obtained. The details of this procedure are beyond the scope of this
paper. They can, however, readily be found in [10]. Furthermore, the basic deformation modes of the
described unit cell models are presented in Fig. 2 (top): mode (a) corresponds to uniaxial tension in
longitudinal 1 direction, mode (b) is caused by uniaxial tension in transverse 2 direction, mode (c) is
the result of in-plane shear forces. Modes (d) and (e) are predicted for bending about the transverse 2
direction, and the longitudinal 1 direction, respectively. The deformed configuration (f) in Fig. 2 (top)
reflects the effects of a macroscopic twisting moment.

For those macroscopic load cases, that do not involve in-plane shear deformations of the liners,
the corresponding critical loads with respect to local buckling of the flute and/or the liners can be
calculated in a straightforward manner by solving the corresponding linear buckling eigenvalue problem
with ABAQUS. The corresponding buckling modes are presented in Fig. 2 (bottom) with the same load
case identifiers (a,b,d,e) as described in the previous paragraph. In this figure, the periodic nature of
the microscopic displacements is particularly obvious and demonstrates the appropriate definition of the
periodic boundary conditions. Shear dominated buckling modes can only be predicted qualitatively with
the present unit cell model as shown in Fig. 2 (c) and (f).

Flute and liners were discretized with 8-node, bi-quadratic finite shell elements with reduced integra-
tion.The mesh refinement had to be a sensible compromise between numerical accuracy and numerical
effort, because each optimization procedure consisted of hundreds of individual finite element analyses.
A convergence study was performed and a fixed ratio of approximately 0.075 between the element length
in the 2-3-plane and the spatial distance between diagonally adjacent bonding points was found to give
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reliable predictions for the expected flute curvatures in connection with an element length in 1-direction
that was twice as large as the aforementioned length.

2.3 Semi-Analytical Optimization Approach

The optimization problem under consideration involves four free geometrical parameters (bwl, huc, tL,
and tF), the calculation of the effective bending stiffness about the transverse 2-axis, and the calculation
of critical compressive membrane loads |N∗

11| that lead to local buckling in the sandwich compound.
For the most general case, that includes orthotropic material data and allows for an interaction of

fluting and liners during buckling, an analytical treatment of the buckling problem certainly becomes
unfeasible. The treatment of the buckling problem can, however, be simplified by assuming isotropic
material behavior and by the assumption that there is no interaction between the buckling mechanisms
of liners and fluting. For this simplified system it is possible to give reasonable estimates for the buckling
stress σ∗

11,L of the liners and the buckling stress σ∗

11,F of the fluting, respectively, the loading being in-
plane compression in the longitudinal 1-direction. The optimization problem can then be expressed, e.g.,
by postulating optimal properties for simultaneous buckling of fluting and liners:

σ∗

11,L = σ∗

11,F (2)

and minimizing Ā accordingly. The required bending stiffness B1 ≥ B1,0 has to be introduced as an
additional constraint.

This approach requires estimates for the buckling stresses of liners and fluting. The buckling stress
σ∗

11,L of the liners can be described rather conveniently by the following formula used for the prediction
of elastic buckling stresses for rectangular, isotropic plates:

σ∗

11,L = k E

(

tL
bwl − bb

)2

(3)

The factor k depends on the Poisson’s ratio ν of the material, on the length-to-width ratio of the plate, on
the kinematic boundary conditions, and on the type of the loading. Treating the liners as infinitely long
plates, that are clamped along their edges, and loaded under compression in their longitudinal direction
gives k = 6.4 for ν = 0.3. As long as the buckling mode corresponds to the kinematic assumptions, i.e.,
as long as it is symmetric with respect to the bonding line between fluting and liners, this equation gives
a fairly accurate prediction of the respective buckling stress.

The prediction of the buckling stress σ∗

11,F of the fluting was more involved, as no closed-form solution
was available. It was decided to approximate the buckling stress σ∗

11,F = σ∗

11,F(huc,bwl,tF,bb,E) for the
special case bb = 0 by a fitting function that was similar in structure to Eq. (3). This fitting function
was defined as:

σ∗

11,F ≈ k̃F E

(

tF

b̃F

)2

(4)

With the dimensionless geometrical parameters b̄F = (bwl−2bb)/(2tF) and h̄F = huc/tF the following
fitting functions were found to give good results for the equivalent buckling factor k̃F and the equivalent
plate width b̃F without introducing too many fitting parameters:

k̃F = κ00 + κ10 b̄F + κ20 b̄2
F + κ01 h̄F + κ02 h̄2

F (5)

b̃F =

(

1 + β1

[

b̄F

h̄F

]0.5

+ β2

[

b̄F

h̄F

]

)

√

b̄2
F + h̄2

F (6)

The seven unknown fitting parameters κij and βi were consequently determined by fitting the values
of Eq. (4) to sample buckling stresses predicted by means of a finite element unit cell model of the
fluting, see Fig. 3. The least-squares fitting function ‘FindFit’ of the mathematical software Mathematica
(www.wolfram.com) was used.

With appropriate analytical expressions for σ∗

11,L and σ∗

11,F being available in the form of Eqs. (3)

and (4), respectively, an optimization problem Āopt = min(Ā) can be formulated under the inequality
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Figure 3: Predicted buckling mode for local buckling of the fluting (without liners) under compressive
loading along the generatrix of the flute (1-direction).

constraints σ∗

11,L ≥ |N∗

11|/Āopt, σ∗

11,F ≥ |N∗

11|/Āopt, B1 ≥ B1,0, and bwl, huc, tL, tF ≥ 0. This optimiza-
tion problem was solved numerically with the function ‘NMinimize’ of Mathematica, which implements,
among others, a Downhill-Simplex method and a genetic algorithm, both of which were used in this
study and gave identical results, see Section 3.

2.4 Numerical Optimization Approach

The semi-analytical approach discussed above contains a number of simplifications that are not necessary
if a suitable optimization algorithm is wrapped around a finite element model that performs the necessary
mechanical calculations with arbitrarily high accuracy for general settings.

Specifically, the prediction of the critical compressive membrane force in longitudinal direction |N∗

11|
can be performed with a finite element unit cell model such as the one described in Section 2.2 and the
linear buckling eigenvalue prediction capabilities of ABAQUS. This, however, implies the introduction
of an additional geometrical variable, that so far did not play a role, namely the unit cell length luc. The
buckling mode shape is influenced by this parameter, because the length of the unit cell, in connection
with the periodic boundary conditions in the longitudinal direction, imposes kinematic constraints on
the unit cell model that would not be present in an ‘ideal’ model of infinite length. Such an infinite,
or even a semi-infinite model is not feasible numerically, and a strategy is necessary for predicting the
(theoretical) buckling strength of the infinite board strip with a finite-size model.

This poses an optimization problem by itself, namely the minimization of |N∗

11| by variation of luc

for a given set of parameters huc, bwl, tF, and bb. Figure 4 presents the dependency of the longitudinal
buckling membrane force |N∗

11| on the length of the unit cell luc in form of a diagram. The corresponding
corrugated board data was the one described for the isotropic reference configuration. For luc → 0 the
buckling force rises to infinity, because this equals b → 0 in the term (t/b)2 ∝ σ∗ that is a factor of
proportionality for the buckling stress σ∗ of a rectangular plate under uniaxial compression. For luc → 10
mm the critical membrane force begins to drop and reaches a local minimum at luc ≈ 10 mm. This local
minimum represents the natural buckling mode of the infinite strip very well insofar, as the unit cell
length is equal to the theoretical wavelength of the wavy buckling pattern in the infinite setting. As soon
as the unit cell length is increased further, the buckling force rises again until luc ≈ 15 mm, and then
drops again as luc approaches ≈ 20 mm. Here, a second local minimum is visible, since the unit cell now
is able to accommodate two full buckle wavelengths, compare the corresponding insert image in Fig. 4.
This pattern can be repeated for increasing unit cell lengths, as the dashed line in Fig. 4 indicates. If the
unit cell is long enough, small variations of the unit cell length do not play a significant role any more,
because the actual buckling wavelength will be close to the theoretical wavelength no matter what the
actual length of the unit cell is.

Both the solid line and the dashed line in Fig. 4 drop off at certain large values of luc. The reason
for this unexpected behavior is that the local buckling mode becomes energetically less favorable than
a global buckling mode reminiscent of Euler beam buckling. This indicated by the inset pictures at
the right side of Fig. 4, which show one buckling half-wave for the lowest eigenvalue (solid line) and
two buckling half-waves for the next-to-lowest eigenvalue (dashed line). The physical relevance of these
results is questionable, because for the prediction of the global buckling of corrugated board as a plate
it is certainly necessary to define the kinematic boundary conditions in a manner that is less artificial
than the one inherent in the periodic boundary conditions. Recall, that global buckling is represented
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Figure 4: Systematic variation of the unit cell length luc and its effect on the critical compressive
membrane force |N∗

11| in the 1-direction.

in the present study only insofar, as a necessary minimum bending stiffness B1 is required during the
optimization procedure.

For finding the first minimum of the relationship |N∗

11|(luc) a one-dimensional optimization algorithm
was sufficient. The Python package for scientific programming ‘SciPy’ [11] was used to set up the
corresponding programming environment. SciPy offers an implementation of Brent’s method ([12]) in
the form of the function ‘fminbound’ that was called for finding the unit cell length that corresponds to
the wavelength of the buckling pattern of the infinite corrugated board strip.

The numerical scheme for the determination of the buckling membrane load in the longitudinal direc-
tion |N∗

11| for a given set of governing geometrical parameters was then embedded into an optimization
scheme for the minimization of the specific cross-sectional area Ā. This scheme uses the SciPy function
‘fmin cobyla’ for the determination of a local minimum for a given nonlinear objective function in the
presence of nonlinear optimization constraints. ‘COBYLA’ is an acronym for ‘constrained optimization
by linear approximation’. The corresponding iterative algorithm, that allows for an optimization without
having to calculate derivatives, was originally proposed by Powell [13].

The stiffness constraint B1 ≥ B1,0 was taken into account based on purely geometrical terms, namely
the width-specific area moments of inertia of liners and fluting and their corresponding elastic moduli.
It would certainly have been possible to calculate the effective stiffness of a given corrugated board
by means of the available finite element unit cell, but in the light of the hundreds of simulation runs
necessary to perform a complete optimization this was regarded as infeasible. Additionally, the accuracy
of the analytical prediction proved to be high enough for all practical purposes.

With the described nested numerical optimization scheme it was possible to improve any given set
of initial geometrical parameters in terms of the effective area-specific board weigth while, at the same
time, providing a corrugated board design with the necessary strength for avoiding local and global
buckling.

3. Results

For the optimization of the reference configuration for isotropic material behavior, two approaches were
proposed: a semi-analytical and a numerical one. The semi-analytical optimization method relied on
an approximation of the buckling membrane force |N∗

11| by means of a nonlinear fitting function. The
optimization procedure could be formulated entirely within the software Mathematica.

Applying this method to the isotropic reference configuration (see Tab. 2, left) gives a result that
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Table 2: Geometrical parameters of the isotropic reference configuration (left), the result of the semi-
analytical optimization (middle) and the result of a subsequent numerical optimization (right).

Reference Configuration
(isotrop)

bwl = 7.2 mm
huc = 3.6 mm
tL = 0.2 mm
tF = 0.2 mm
Ā = 0.6922 mm

⇒

Optimized Configuration
(semi-analytical)
bwl = 5.030 mm
huc = 4.230 mm
tL = 0.150 mm
tF = 0.136 mm
Ā = 0.5752 mm

⇒

Optimized Configuration
(numerical)

bwl = 4.830 mm
huc = 4.200 mm
tL = 0.152 mm
tF = 0.136 mm
Ā = 0.5851 mm

b

Optimization

Original configuration

Semi−analytical
Optimization

a c

Original configuration

Numerical
Local optima
(orthotropic)

Figure 5: (a) Plot of the original configuration (gray) with the geometry resulting from the semi-
analytical optimization for isotropic material behavior being superimposed in black color; (b) the previous
result (gray) subjected to the numerical optimization procedure gives the geometry drawn in black. (c)
Original configuration and the best three designs for orthotropic material behavior.

is 16.9% lighter than the reference configuration while predicting the same critical membrane force
|N∗

11| = |N∗

11,0| and the same bending stiffness B1 = B1,0, respectively, as the reference configuration,
thus indicating a successful optimization procedure. The respective geometrical parameters are given in
Tab. 2, middle). Corresponding cross-sections through the corrugated board are visualized in Fig. 5 (a).
This figure shows that the thickness huc of the board increases as a result of the optimization procedure
while the wavelength of the flute bwl decreases. Therefore, the flanks of the sinusoidal flute become
steeper. Both the thickness of the fluting paper and the thickness of the liners are reduced, which is the
primary reason for the weight decrease.

It is now possible to use the result of the semi-analytical optimization as the initial configuration for
a subsequent numerical optimization which uses an accurate finite element prediction of |N∗

11| instead
of the approximation with a fitting function used in the semi-analytical approach. The result, which
is given in Tab. 2, right), is very promising insofar, as the geometrical parameters change only very
little relative to the semi-analytical optimum. The value that is affected the most by the numerical
optimization is the width bwl, whereas the thickness of the fluting paper tF does not change at all. Fig. 5
(b) visually demonstrates the similarity of the results.

Again, the weight per projected area was reduced compared to the original configuration, this time
by 15.5%. Now it may appear surprising that the numerical optimization produces a design that is
actually heavier than the semi-analytical one. The reason for this unexpected result can be found in
the approximative nature of the prediction of |N∗

11| in the semi-analytical approach, because the actual
critical membrane force calculated with a finite element model having the geometry described in Tab. 2,
middle) is 8.4% lower than the required buckling strength of |N∗

11,0|. In other words, the semi-analytical
approach slightly overestimates the buckling resistance for the investigated case, leading to a design
that is 1.7% lighter than the one proposed by the more accurate numerical method. Nevertheless, the
similarity between the two designs is remarkable.

In the previous paragraphs the attribute ‘optimal’ has to be understood in a local sense. This can be
demonstrated by using the isotropic reference configuration as the starting point for the numerical
optimization instead of the semi-analytical optimum. This change gives a local optimum which is
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Figure 6: Simultaneous buckling of flute and liners in an optimized orthotropic corrugated board. In
the considered case, the symmetry of the buckling mode with respect to the wavelength of the flute is
maintained even if the unit cell width would allow for antisymmetric buckling modes (right).

slightly worse (Ā = 0.5856 mm instead of 0.5851 mm) compared to the previously reported design.
Furthermore, the COBYLA algorithm requires 109 iterations for achieving convergence as opposed to
the 43 iterations necessary for achieving convergence when the semi-analytical optimum is the starting
point of the numerical optimization. This indicates, that — due to the non-linearities involved — the
starting configuration has an influence on the optimization result, indicating the existence of many local
optima, and also affects the rate of convergence of the optimization algorithm. One has to keep in mind
that for each iteration of the COBYLA algorithm the iterative calculation of |N∗

11| consumes on the
order of 10 individual finite element buckling analyses.

For the corrugated board design with orthotropic material behavior of fluting and liners very similar
results were obtained. The initial configuration was documented in Tab. 1. Starting the COBYLA
algorithm from this configuration gives an optimized design with bwl = 5.05 mm, huc = 4.04 mm,
tL = 0.208 mm, and tF = 0.136 mm. Again, the paper thicknesses were reduced, the overall board
thickness was increased, and the flanks of the sinusoidal flute became steeper. The specific area Ā was
reduced to 0.6795, which means a weight reduction of 18.2%.

For the orthotropic board a systematic variation of the starting parameters was performed in order
to investigate the existence of local optima in more detail. To this end, the following boundaries for the
geometrical parameters were prescribed: 2.50 ≤ bwl ≤ 10.0, 2.00 ≤ huc ≤ 8.0, 0.14 ≤ tL ≤ 0.31, and
0.09 ≤ tF ≤ 0.21, with all values being given in [mm]. Then, 16 optimization runs where performed with
starting values for the geometric variables that were permutations of the boundary values given above. A
geometrical interpretation of the different starting configurations can be given in terms of the corners of a
hypercube in the 4-dimensional parameter space of the problem. The completion of the 16 optimization
runs took 1780 COBYLA iterations and around 16000 finite element analyses in total. Only one set of
initial parameters, namely bwl = 10 mm, huc = 8 mm, tL = 0.14 mm, and tF = 0.21 mm, produced a
optimized configuration (bwl = 4.82 mm, huc = 4.13 mm, tL = 0.195 mm, and tF = 0.141 mm) that
gave a more favorable Ā of 0.6794 mm than the design originating from the reference configuration. The
negligible difference in the specific weight indicates that conventional corrugated board designs may be
good starting points for the described optimization procedure. It has to be added that none of the 16
starting configurations produced an optimized result for which any of the optimization variables assumed
their respective boundary values. Fig. 5 (c) shows the three best designs obtained for the board with
orthotropic material properties.

Looking at the buckling modes of the numerically optimized corrugated board designs yields addi-
tional insight into potential attributes of such optimized structures. Figure 6 shows the local buckling
mode for the optimized configuration with orthotropic paper properties. Figure 6 (left) shows simultane-
ous buckling of fluting and liners, which supports the assumption of a simultaneous-buckling optimization
criterion in the semi-analytical approach.

Furthermore, additional buckling analyses performed with finite element unit cell models of optimized
configurations, that contained two full fluting waves, compare Fig. 6 (right), demonstrated, that in the
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considered case the liners indeed buckle like clamped plates, i.e., symmetrical with respect to the bonding
lines between fluting and liners. This indicates consistency of the optimized designs with the clamped
boundary condition assumption inherent in the semi-analytical model and the finite element models that
use only one full fluting wave over their width.

5. Conclusions

A scheme for the reduction of the area-specific weight of corrugated board by means of numerical
optimization methods has been proposed. Strength constraints were implemented in terms of a required
minimum resistance of the board against local and global elastic buckling. The former buckling mecha-
nism could be quantified in closed form by semi-analytical approaches in the case of isotropic material
behavior and by finite element unit cell buckling analyses in the case of orthotropic material behavior.
Global elastic buckling was related to the effective bending stiffness about the axis transverse to the
flute orientation with a corresponding required minimum value.

Numerical optimization schemes were then used to produce improved corrugated board designs by
iteratively changing the principal geometrical parameters of the corrugated board in the sense of a
sizing optimization. Compared to reference geometries a 15.5% weight reduction was achieved for the
board made from isotropic material and a 18.2% weight reduction was achieved for the board made
from orthotropic material. In both cases the resulting designs showed simultaneous buckling of liners
and fluting under compressive membrane loads in the longitudinal direction indicating that this behavior
may be characteristic of optimal solutions. While the non-linear nature of the optimization problem does
not ensure the prediction of a true optimum in the strict, global sense, the applied algorithms proved
to be robust and useful for improving given corrugated board configurations in terms of a reduction of
their specific weight.
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